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ABSTRACT

In this paper we describe a robugorithm for information
extraction from spoken languagedata. Our probabilistic
algorithm builds on results in language modeling, usitegss-
based smoothing tproducestate-of-the-art performander a
wide range of speech error rates. We show that system
performs well with sparse data, as well as vatit-of-domain
data.

1. INTRODUCTION

Extracting linguistic structure such as proper namesyun

phrases,andverb phrases is an important first step nrany

systemsaimed atautomatic language understandingWhile

significant progresshas beemade onthis problem, most of
the work has focused on “cleatéxtual data such asewswire
texts, where cues such asapitalization and punctuation are
important for obtaining high accuracy results.

However, there are many dataurces wheréhesecues are not
reliable, such as inspoken languageata orsingle-casetext.
Spoken language sources, in particular, pasgditional
problems because of disfluencieand speech recognition
errors. This paper addresses the problemindbrmation
extraction from speech, introducing aew probabilistic
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Viterbi-style decoding isused to produce themost likely

sequence ofphrase labels in a test corpus.The simple

Identifinder approach has resulted high performance on
many text-basedtasks, including Englishand Spanish
newswire texts.

In this work we describeour approach to the problem of
information extractionfor spoken languagedata. A key
component ofour approach is that infrequemtata is handled
using a class-basesmoothing technique (lyer &Ostendorf,
1997) that, unlike theeature-dependent back-off, allows for
ambiguity of word classes. Thus, we canincorporate
information from place and nameord lists, aswell assimple
part-of-speech labels, and account for the fact that some words
can be used in multiple classes.

The specific information extraction task wadress inthis
work is namerecognition (identifying names of persons,
locations, and organizations), aswell as identification of
temporal and numeric expressions. Also known asnamed
entities(NESs), these phrases can weeful toidentify in many
language understanding taslsjch as coreferenceesolution,
sentence chunkin@nd parsing, and summarization/gisting.
Namedentity identification in writtendocuments haseen
examined extensively under the auspices of theMessage
Understanding ConferencéMUC) sponsored byDARPA, and

approach that builds on language modeling techniques tgyerformance of name recognizers, ramedentity taggers, on

obtain robust results eveor high error ratetasks. Previous
approaches that havaddressedspeech data have consisted
largely of applying an existing text-based systemspeech
data,ignoring the fact thatinformation is both lost(due to
recognition errors) and gained (from acousticues andword
confidence prediction) when moving from text to speech.

We have developed grobabilistic framework for the
identification of linguistic structure inspoken languag@ata.
Our model builds on the work oBBN's Identifinder system
(Bikel et al., 1997, Bikel et al., 1999)hich uses a hidden
state sequence torepresent phrase structurand state-
conditionedword bigram probabilities as in &iddenMarkov
model. The BBN model incorporate®n-overlappingfeatures
about the words, such as punctuatimd capitalization, in a
bigram back-off to handle infrequent or unobserwedrds.

written documents such a#/all Street Journalarticles is
comparable to human performance (usuall94-96%
accuracy). DARPA has recently expanded the scope of its
information extraction evaluations tmclude namedentity
recognition inspeech data, botleonversationalspeech and
broadcast news speech.

We show our approach to produkcigh performance omspeech
datawith awide range ofword error rates (WERs)including
referencetranscriptions (WER 0%) of broadcast news. In the
official 1998 DARPA Hub-4 information extraction
evaluation,our phrase modeproducedexcellent resultswhen

Named entity system performance is typically reported in terms of the
F-measure which is the harmonic mean of recall and precision. All
system accuracies we report will be in terms of the F-measure.



applied to the task ofdentifying names in broadcastews
transcripts. When applied to transcripts generated by
automatic speechrecognition, the model showedhigh
performance (71-81% accuracy), despit®rd error rates
ranging from 13% to 28%.0ur model alsoproducedexcellent
results (88%accuracy) inrecognizing namedentities in the
reference transcripts.

2. SYSTEM OVERVIEW

The mathematical model wase isvery similar to the model
developed by BBN (Bikel et al., 1997), with sevenalportant
differences. In Section2.1-2.3 wewill review the basic
assumptionsmade inthe modeland discuss the differences
between our approach and BBN's work.

2.1. Probabilistic Model

As in the BBN model, weuse ahidden statesequence to
represent phrase structure, with the assumption g¢hahword

in a document is emitted by a state in the model, similar to a

hidden Markov model (HMM). The problem is thus framed as a
maximization of the hidden state sequense..§) mostlikely
to have producedthe known word sequence \;...w,), or

P(s;...S |w,...w).

This probability can be reformulated using BaykaWw and the
chain rule; making a Markov assumption that the statened
t is dependent only on the stadedobservation atime t—1,
we arrive at the following formulation:

agmax P(s...s |w,...w,)
S...8,

L O
= argmax{ | P(w, [5.w,_,) P(s Iafl.WH)H
S...§ =

model. In the original BBN model, each word is
deterministically assignedone of 14 non-overlapping
features, such asvo-digit-numbey contains-digit-and-period
capitalized-wordg and all-capital-letters When a bigram is
infrequently observed, the back-off distributiatepends on
the assigned feature.

2.2 Model topology

The HMM-like topology ofour model has severalmportant
characteristics.  First, wavish to model both sentence
boundariesand phrase boundaries, believing th#iere are

important contextualeffects associated wittboth. These
boundariesare modeledexplicitly in the topology, which
includes sentence-initial and sentence-final states

(necessitatingthe insertion of a pseudo-observation at each
end of a word sequence). Also, each phrase type hastates
associated with it: the first models the first word of piease,

the second models all successive words. Phrase boundaries can
thus be reliably determined, evevhen two phrases of the
ame type occur consecutively.

Figure 1 shows a simplifiedview of thetopology. Note the
pairs of states for each phrasge—in this caseonly those

for location and other are shown in detail. Ingeneral,
however, the second of each pair aarly bereached from the
first (and itself, via a self-loop), while the first can be reached
from any other state excephd

The topology provides an implicinodel of phrasdength, as
the self-loop transition probabilities to atate represent a
form of geometric distribution of phrase lengths. Faredain
phrase type, ip is the transition probability between tliest
andsecond state of the phrase modahd q is the self-loop

The two probabilities in the maximization can then be
optimized separately.The first, Pfv|s,w,_,) can bethought of
as a state-dependent bigram language model; stheond,
P(sls_,W,,), can be viewed as the statansition of anHMM,
from the state at time-1 to the state at time It is important
to note that, while wemake the Markovassumption in
simplifying the equations and there is substantial similarity t
an HMM, this model is not strictly an HMM. Both
distributions  violate the conditional independence
assumptions in a traditional HMM, as thaye conditioned on
the previous wordw,_,.

In our system, the languagmodel probability P{vjs,w, ,) is
obtained via an LM using class-bassethoothing, aswill be
described further in Section 3. BBN'’'s work, this emission
probability is obtained via a simple back-off bigrdanguage
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Figure 1: Simplified model topology




probability for the second state, the probability of a phrase ofmaterial.

lengthl is as follows:

forl =1
forl>1

P()=1-p
PO =pd' "1 -q)

Modeling phrase length in thisvay is usefulfor syntactic
phenomena such as proper names, in which and-two-word
phrases are very common.

2.3 Parameter estimation

Similarly, while orthography features—such as
punctuation, capitalization, and the presence ofnon-
alphabetic  characters—provideuseful information for
distinguishing tokens in textual data, they are normalbsent
in speech data. For exampk30.25in text becomesthirty
dollars and twenty five cents” in speech transcriptions.

We address the need for maabust features by using cdass-
basedsmoothing technique (lyer & Ostendorf1997), which
has previously beerused to develop speechrecognition
language models that successfully combinormation from

many sources. An advantage of this method is that it allows us

One advantage of the model topology described in Section 2.20 incorporate information from placand nameword lists, as

is the factthat, given trainingdata hand-labeled withphrase
type and extent, the state corresponding é&ach word is
completely observableThe first word in each phrase is
emitted by the first state, while all remaining words amitted
by the second state. Consequently, thaximum likelihood

well as simplepart-of-speech labelsandaccount for thefact

that somewords can beused in multiple classes. When
available, the standard “clean text”
capitalization and punctuation can also b#cluded in this
way. In thefollowing sections wewill describe our language

values of thetransition parameters can be easily calculated modeling approach in detail.
from corpus counts in the training data without the need for the

Expectation-Maximization algorithm.However, because the
state transitions are conditioned on the previousvord, the
model is susceptible to sparsdataissues. Throughout our
statistical model, weuse linear interpolation to compensate
for sparse datasmoothing the values with the lower order
statistics. In the case of the stdtansitions, the interpolated
formula becomes:

P(S |St—1vW1—1) =2 PML(S |§—11W1—1) +(1_)‘)PML(51 |3—1)'

P.. is a maximumlikelihood (relative frequency) estimate

taken directly fromtraining data, and A is a word-dependent
interpolation constanttype C from (Wittenand Bell 1991).

The value ofA is determined by the following formula:

_ (s
n(St—l’\Nt—l) + r(s—l’\Nt—l)

where n() is the number of times a context occurs,rgnis the
number of unique outcomes of that context.

3. STATE DEPENDENT LANGUAGE
MODELS

In order to produce aobust modelapplicable to spoken

language data, we wish to limit tliependence on the actual

words in the text and on features derived fromtheir
orthographic realization. Unlikdata fromtext sources, such
as newspapers, the words in transcriptions #mabutput by a
speech recognizer may not be the “correct” words. that
reason, it is helpful touse asmoother HMM observation
distribution (i.e., the state-dependent language modélan
would be estimated from accurately transcribettaining

3.1. Class-based smoothing

In our class-based language model, rather than ghmeple
bigram with back-off based on the words, thegram
probability is obtained by smoothing over the possible
linguistic classes for thevords inthe bigram. This ishown
in the following formula,where ¢, ranges over theossible
linguistic classes of word,;

P(w, [w,_;,5) = Z P(w, |G, W,;,5)P(c, [w,;,S)

As in the case of the stateansition probabilitiesdiscussed in
Section 2.3, sparselata issues are addressedising linear
interpolation with lower order statistics:

P(w, |6 W,_1,§) = APy (W |6, W_1,8) + (1=A) Ry (W, |G 8)

Wherethe interpolation constanfl is definedanalogously to
that in Section 2.3. Training the languagedel consists of
first assigning a part-of-speeckag to eachword in the
training data, then calculating the bigrastatistics for the
formula above.

In the first step otraining, the words inthe training data are
labeled with part-of-speech information using METRE part-
of-speech tagger, an implementation tbé transformation-
based learning approach introduced in (Brill 1992). Tdwger
assigns toeachword one of 40 tags from the Perfreebank
tagset. TheMITRE tagger has a reporteatcuracy 0f93—-95%

on single-case text with no punctuation, which is similar to

the speech transcriptions we are processing.

features such as



After POS tagging is completed, theining data isseparated
into its component “languages.’For example, thePERSON
language is estimated by creatingnew file containing all the
words (andcorrespondingPOStags) fromPERSONphrases in
the training data, with each phrase treated asseparate
sentence or utterance. For each of these languadasgaage
model is trained according to the description above.

3.2. Use of word lists

A major consideration in developingformation extraction
systems in general is the treatment of unknomards. In
most current speech recognition systems, the amontent
of the system lexicon is predetermined, and the recogmidér
output theword in its lexicon which most nearly matches the
input audio stream. For the purposes of informagatraction

from the outputs of such systems, we only need to focus on the

words contained in the systentexicon. In contrast, the
problem of unknownwords receives much attention in text
data, wherehe vocabulary is unlimited. However, apeech
systems evolve to being able intelligently processwords
that arenot explicitly in the lexicon, information extraction
systems need to be moreclosely integrated with the
recognizer. Rather thasimply processingthe words output
from a “black box”, wewould like to be able to improve the
treatment of unknowmwords andthereby improve thebility
to extract information from the original audio signal.

For the purposes ofidentifying names in speechdata,
unknown words are aignificant concern. While the overall
out-of-vocabulary(OOV) rate istypically very low (<1%) for
most large-vocabulary (48k—64k) recognition systems,

OOQV rate issignificantly higher for words in namephrases,
frequently ranging from 5% to greater than 20%. atidition,
the OOVrate can vary greatly depending on the typenae
phrase, such that an unknowrord is not equallylikely to be
found in all phrasetypes. Since a large part obur work

focuses ortraining separate languageodels for thetypes of
name phrases, being able to classify unknown wartording
to the type of name phrase is very important.

We accomplish this by classifyinginknown training words
into several tokens tharecorrelated with the types afame
phrases. Our current system contains four such word tokens:

unknown person

unknown location

unknown person OR location
other unknown

PoNPE

The classification of the unknowwords is determined by the
presence of thevords inword lists, which areindependent of
the main LMlexicon. Wecurrently usetwo word lists, both

the

obtained from public domain sources:list of first and last
names from the U.S. Censi{s90,000 words) and alist of
location names from th&IPSTERGazettee(~120,000 word).
In this manner, theprobability mass from theoriginal
unknown word token is distributed to tokens whichetter
correlate with the types of phrases we are identifying.

In ourinitial experiments usingvord lists in this manner we
obtained a 10% relativemprovement in overall system
performance. Our analysis ofthe output indicates that the
wordlists are indeedhelping the model identifyand classify
relevant unknown words. However, thise ofsuchextensive
lists has the disadvantage that it overgenerahiSs for
ambiguous words such as Macarena (a popular dance, but also a
city in South America).

4. EXPERIMENTS AND RESULTS

The system we describe above was formally evaluategr the
auspices of the DARPA-sponsorddub-4 (BroadcastNews
Transcription and Understanding) workshop in Febrdz899.

The nextsection will describe this evaluaticemd ourresults.

In addition to formal evaluation as part of thidub-4
workshop, we ran several systematic experiments to determine
the contributions ofvarious system components tur NE
performance. Section4.2—4.3 will describe theseadditional
experimental results.

4.1. Hub-4 evaluation

In the official Hub-4 information extraction evaluation,
participating siteswere provided with a set ofmanually-
annotated training data as well as a development testSsts
usedthis data, either via machine learning or vimnually-
written rules, to develop systems whichuld automatically
annotate data.The sites thenran their systems onseveral
common test setsand the outputswere scored against a
manually-annotated “key"and compared. The test sets
consisted of differenttranscriptions of the same news
broadcasts: a manually-transcribed reference as wethrae
transcriptions from different speechrecognizers. All
participating sites produced named entignotationfor these
four transcriptions, sahe results can be directlgompared.
Each site additionally produced annotation for a fifth
transcription, but since the fifth transcription was different for
each site, the results cannot be directly compared.

The training, developmentand evaluation datasets wased
were prepared for the Hub-4 IE evaluationMiTRE and SAIC.

In addition, BBN prepared 100 hours to&ining data andmade
it available to the community fasse inthis evaluation. The
combined training data sets from MITRE/SAIC and BBN



consisted of about one milliowords andabout50,000 named
entities. The evaluation set consisted of a@2000 words,
1800 namedentities. Both the training and evaluation data
consisted of a combination oAmerican broadcassources,
both television and radio news, from a range of dht&tween
1996 and 1998.

We participated in all parts of thdub-4 evaluation using the
system describedbove. Thelexicon consisted of 63kvords

representing a combination dlie lexicons from two large-

vocabulary speechecognition systems awell as alist of

words from theMITRE part-of-speech tagger. Akescribed in
Section 3.2, the additional person and location nhame listsl

in unknown word classification were obtained frompublic

domain sources.

Table 1 shows our system results for each offtlue common
evaluation datasets. In addition to the common sets, we
collaborated with SRI to produce annotation on their
recognizer output, which had a WER of 21.1%.

For each of theASR datatranscriptions, our system results
were as good or better than the other top systems evaluated.
addition, our model produced near-human results(88%
accuracy) on the reference transcription (WER 0%).

WER (%) F-Measure
28.3 71.1
21.1 78.1
14.5 82.2
13.5 81.6

0 88.2

Table 1: System performance for a range
of word error rates.

4.2. Effect of training data size

Determining the effect of the amount whining data ontask
performance ismportant. While there are large amounts of
training data available for the English NE task, similar

amountsare not available for other information extraction
tasks, includingnoun and verb phrase parsingand non-

English NE. For suchtasks, algorithms thateal well with

data sparsity are desirable.

BBN has published results of experiments in whittey
trained their NE system with different amounts of traindega,
ranging from 100k words to over onemillion words. They
found that overall performance in NEcognition increased in
a log-linear fashion; that isfpr each doubling in theamount
of training data, the NE performance improved by a favints.
We performed similarexperiments with our system. We

divided theHub-4 training datainto four subsetsand created
separate training setéfrom the subsets in allpossible
combinations. Evaluating the resulting systems aeparate
test set produced log-linear results similar to those reported by
BBN.

4.3. Contribution of class-based
smoothing

Our objective in using class-basesmoothing inthe bigram
language modelvas to producemore robust models than the
simple bigram model, which is dependexclusively onword
identity. Inorder to determinghe contribution ofthe class-
based smoothing inthe language model, we repeated the
training set size experiments with language modehsined
without classinformation. For each of thetraining subsets,
we retrained the language modegllapsing all POStags to a
single tag, and thus effectively removing the classoothing.
Testing these models on t#SR datawith the highest word
error rate (28.3%), we found that removing the POS
information from the language models resulted icoasistent
@egradation (1-2% absolute) mamedentity performance for
all training sets.

While the class-basedsmoothing produced consistent
improvement inerrorful speech datahis improvement was
not observed when the same modeisre used inannotating
the referencetranscripts with WER of 0%. However, as
mentioned in the previous section, the trainigd evaluation

data used consisted of more than onemillion words of

broadcasts from wide range of date$1996—1998). The data
also consisted of a mixture of broadcast domaimsrld news

summaries such as CNNTI$e World topical news showssuch

as ABC'’s Nightline and CSPAN'sPublic Policy, and radio

news shows such a®NPR’s All Things Considered and

Marketplace Theclass-basedmoothing has been themost

effective incombining sparselata frommultiple domain, as
shown in (lyerand Ostendorf, 1997). To demonstratkis

effect usingour phrase models foinformation extraction, we
completed two furtheexperiments on theeferencetranscript
data. In both experiments we defined training and testtbats
would have less overlap in content than the largtub-4

training and test data.

In the first experiment, welefined a newtraining set that
consisted of theCNN world newsbroadcast programs in the
Hub-4 training set; this set comprised 63 broadcasts 865k
words. We defined an independent test set fromHihle-4 data
consisting ofeight NPR broadcasts. The training datathus
consisted entirely ofboroad coveragetelevision news data
while the testdata consisted of topicalradio news data.
Comparing the performance of language models traimgd
and without class-basesmoothing on thisdataindicatedthat



the class-basedmoothing improved overall performance by also thankBBN for preparingandreleasing the additional NE

2.3% relative.

training data andor providing insight intotheir Identifinder

system. Finally, we thaniSRI for making the output ofheir

In the second experiment, we definettaining set consisting
of the files from theHub-4 datathat representedbroadcasts
from early 1996, 40 broadcasts with 200k words. dafned
an independent test set consisting of the 8 broadcasts from th
middle of 1998 that represented the largest time difference
between broadcasts in the data. Comparing the performance of
language models trained witrand without class-based
smoothing on this data indicated that the class-based
smoothing improved overall performance by 1.6% relative.

5. CONCLUSIONS

In this work we have introduced a robust framework for the

labeling of linguistic structure in spoken languadmta, based 3.

on class-basedmoothing. Wehave shown that the model
yields consistently high performance on the task of
recognizing named entities in transcriptions ofspoken
broadcast news data.

Our experiments indicate thabr errorful speech dataglass-
based smoothing in abigram language model produces a
performance increase over standard bigram languagdels.
This increase is consistent over a rangevofd error rates. In
addition, forinformation extraction task$or which smaller
amounts oftraining data areavailable, orfor which only out-
of-domain training data sets are available, the class-based
smoothing can alsoproducehigher performance on reference
transcriptions of speech data.

Our current systemwas developed with speeclata in mind;
consequently, we do notise capitalization orpunctuation,
even when theyare present in thetraining data orreference
transcripts. However, the modeling framework extensible;

it allows for the integration of any additional features,
including featureaunique totext data, such as punctuation and
capitalization. In additionthe extensible framework allows

for the inclusion of additional features,such as word
confidence scoreandacousticinformation. Similarly, while

our initial languagemodelimplementation consists aflass-
basedsmoothing over part-of-speech categories, thksses

we use are not limited to part-of-speech categories. They could
also be automatically generated classes (via clustering), and
the word lists can also baised toassignh more specificclass
labels.
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